Stainless steel cooler for EGR

Jesper Vejlø Carstensen
Senior Research Engineer
Material Technology & Research
MAN Diesel & Turbo Copenhagen
MAN B&W two-stroke diesel engines

<table>
<thead>
<tr>
<th>Engine type</th>
<th>5S30ME-B EGR</th>
<th>6S60ME-C EGR</th>
<th>12G95ME-C EGR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight (ton)</td>
<td>61</td>
<td>350</td>
<td>2.400</td>
</tr>
<tr>
<td>Length (m)</td>
<td>4.1</td>
<td>7.7</td>
<td>23.1</td>
</tr>
<tr>
<td>Height (m)</td>
<td>6.3</td>
<td>11.3</td>
<td>17.5</td>
</tr>
<tr>
<td>Output (MW)</td>
<td>3.2</td>
<td>14.3</td>
<td>82.4</td>
</tr>
<tr>
<td>SFOC (g/kWh)</td>
<td>176</td>
<td>168</td>
<td>165</td>
</tr>
<tr>
<td>SFOC (ton/d)</td>
<td>13</td>
<td>58</td>
<td>326</td>
</tr>
</tbody>
</table>
Typical exhaust gas composition

Exhaust gas
- 13.0% O₂
- 75.8% N₂
- 5.2% CO₂
- 5.35% H₂O

Fuel
- 175% g/kWh
- 97% HC
- 3% S
- 1500 vppm NOₓ
- 600 vppm SOₓ
- 60 ppm CO
- 180 ppm HC
- 120 mg/Nm³ part.

Lube
- 1 g/kWh
- 97% HC
- 2.5% CA
- 0.5% S

Air
- 8.5 kg/kWh
- 21% O₂
- 79% N₂

Work
Why worry about emissions?

NO_x, CO, HC and **SO**_x/PM cause respiratory health problems.

NO_x and HC cause ground level ozone.

NO_x and **SO**_x contribute to acid rain.

NO_x cause euthrophication (nutrient pollution).
Basic EGR principle

EGR = Exhaust Gas Recirculation

- O₂ in the scavenge air is replaced with CO₂.
- CO₂ has a higher heat capacity thus reducing the peak temperatures.
- Reduced O₂ content in the scavenge air reduce the combustion speed thus reducing the peak temperatures.
- Decreased peak temperatures reduces the formation of NOₓ
Section of EGR-unit

- Turbocharger
- TC cut-out valve
- Prescrubber

 - AISI 904L
- EGR-coolers

 - Stainless
- Scrubber inserts

 - AISI 316L
- Reversing Chamfer

 - AISI 316L
- EGR Drain pipes

 - AISI 316L
- EGR-Blower
- Shutdown valve

H₂O + NaOH

EGR-coolers
- Stainless
- Scrubber inserts
- AISI 316L
- Reversing Chamfer
- AISI 316L
- EGR Drain pipes
- AISI 316L
- EGR-Blower
- AISI 316L
- WMC
- AISI 316L
PRE-SCRUBBER
Cools the exhaust gas from approximately 450 to 90°C. Interface for particle and SO2 trapping from the combustion process.

EGR-COOLER
Cools EGR gas from approximately 90°C to 31°C. Interface for particle and SO2 trapping from the combustion process.
Exhaust gas flow (No EGR)

EGR-COOLER
Cools compressed air from approximately **250°C** to **31°C** (Operated as normal air cooler).

SCRUBBER
No water supplied. Acts as a water mist catcher.
Finned tube cooler

Standard air cooler materials:
- Tubes: CuNi
- Fins: Cu
- Tube sheet: CuZn
EGR cooler function

Exhaust gas:
$O_2, CO_2, CO, SO_x, NO_x, HC,$
PM (ash, soot unburned lube/fuel)

T/C cut-out:
Air

Scrubber water:
$OH^-, Na^+, H^+,$
$SO_3^{2-}, SO_4^{2-}, CO_3^{2-},$
Suspended solids from exhaust PM

Cooling water:
Cl^-
(For Sea water cooling application)
EGR cooler environment

Sulphuric acid: H_2SO_4 (e.g. 46 l/h at 61% load)
Other acids: $\text{HNO}_3 - \text{HCl} - (\text{CO}_2)$
Chlorides: Cl^-(e.g. 10-70 ppm)

\[\text{Addition of NaOH to scrubber water:} \]

\[\text{Presence of Na}_2\text{SO}_4 \text{ in scrubber water:} \]

\[2\text{NaOH} + \text{H}_2\text{SO}_4 \rightarrow \text{Na}_2\text{SO}_4 + 2\text{H}_2\text{O} \] (neutralisation)

sulphate inhibition

R. Mellström and S. Bernhardsson
9th Scandinavian Corrosion Congress
Copenhagen, 1983.
Stainless steel for EGR cooler

<table>
<thead>
<tr>
<th>Crystal structure</th>
<th>Composition (wt%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C</td>
</tr>
<tr>
<td>Austenite</td>
<td><0.08</td>
</tr>
<tr>
<td>Ferrite</td>
<td><0.08</td>
</tr>
<tr>
<td>Martensite</td>
<td>>0.10</td>
</tr>
<tr>
<td>Duplex</td>
<td><0.05</td>
</tr>
</tbody>
</table>

Pitting Resistance Equivalent Number (PREN) = %Cr + 3.3 % Mo + 16 % N

High Cr, Ni and Mo provides best resistance in sulphuric acid

⇒ Austenitic stainless steel
Stainless steel for EGR cooler

Good formability for tubes in tube plates

⇒ Austenitic stainless steel
Stress corrosion cracking

Figur 17.30. Spændingskorrosionsbestandighed i iltholdige, neutrale kloridopløsninger. Prøvning udført ved materialernes flydespænding ved pågældende temperatur. Der indtræder spændingskorrosion over kurverne.

C.Vogel, C.Juhl & E.Maahn: Metallurgi for ingeniører
Salt deposits on EGR cooler

Salt deposits (Na$_2$SO$_4$) on cooler (the salt will be dissolved by the scrubber water when EGR is running)
Cooler corrosion

Malfunctioning NaOH feeding in scrubber water

⇒ pH = 1-3 + no inhibition
Cooler corrosion
EGR cooler with seawater

Figure 3: Pitting corrosion relationship as a function of chloride content, pH and molybdenum content of austenitic chromium alloys. Temperature range, 150-180° F (65-80° C), Pitting is not a problem below the line, but may be severe above the line.

Tverberg et al. 2005
Stainless Steel World
Acknowledgments

For contributions to this presentation I would like to thank:

Jannik B Pedersen
Research Engineer
MAN Diesel & Turbo Copenhagen

Claus H Ibsen
R&D Manager
VP Industries/Vestas Aircoil
Thank you for your attention
Contact

Jesper Vejlø Carstensen
MAN Diesel & Turbo
Teglholmsgade 41
DK-2450 Copenhagen SV
Denmark
Phone +45 51290572
E-mail jesperv.carstensen@man.eu
All data provided in this document is non-binding. This data serves informational purposes only and is especially not guaranteed in any way. Depending on the subsequent specific individual projects, the relevant data may be subject to changes and will be assessed and determined individually for each project. This will depend on the particular characteristics of each individual project, especially specific site and operational conditions.